Jihong Chen,Pengcheng Hu,Huicheng Zhou,Jian\u0002zhong Yang,Jiejun Xie,Yakun Jiang,Zhiqiang Gao and Chenglei Zhang declare that they have no conflflict of interest or fifinancial conflflicts to disclose.
[3]Chen J,Yang J,Zhou H,Xiang H,Zhu Z,Li Y,et al.CPS modeling of CNC machine tool work processes using an instruction-domain based approach.Engineering 2015;1(2):247–60.doi:10.15302/J-ENG-2015054.
[5]Rehorn AG,SejdićE,Jiang J.Fault diagnosis in machine tools using selective regional correlation.Mech Syst Signal Process 2006;20(5):1221–38.doi:10.1016/j.ymssp.2005.01.010.
[6]Kim DH,Song JY,Cha SK,Son H.The development of embedded device to detect chatter vibration in machine tools and CNC-based autonomous compensation.J Mech Sci Technol 2011;25(10):2623.doi:10.1007/s12206-011-0737-9.
[7]张曙,智能制造与 i5 智能机床,机械制造与自动化2017;46(1):1–8.
[8]Vijayaraghavan A, Sobel W, Fox A, Dornfeld D, Warndorf P. Improving machine tool interoperability using standardized interface protocols:MTConnect.In:Proceedings of 2008 International Symposium on Flexible Automation;2008 Jun 23–26;Atlanta,GA,USA;2008.
[9]Hu L,Nguyen NT,Tao W,Leu MC,Liu XF,Shahriar MR,et al.Modeling of cloud-based digital twins for smart manufacturing with MTConnect.Procedia Manuf 2018;26:1193–203.doi:10.1016/j.promfg.2018.07.155.
[10]Umati:universal machine tool interface [Internet].Frankfort:German Machine Tool Builders’ Association; [cited 2019 Jun 17]. Available from:https://vdw.de/en/technology-and-standardisation/umati-universal\u0002 machine-tool-interface/.
[11]Weber A.GE“predix”the future of manufacturing.Assembly 2017;60(3):GE70–6.
[12]Siemens y TCS unen fuerzas para impulsar el IoT industrial en MindSphere.Eurofach Electron Actual Tecnol Ind Electrón 2017;(459):28–9.Spanish.
[13]Zhou H,Zhang C,Jiang Y,Chen J,inventors;Huazhong University of Science and Technology,assignee.[Double-code based control method of NC machining and the corresponding device].China Patent CN201810305822.9.2018 Nov 2.
[15]Zhou H,Lang M,Hu P,Su Z,Chen J.The modeling,analysis,and application of the in-process machining data for CNC machining. Int J Adv Manuf Technol 2019;102(5–8):1051–66.doi:10.1007/s00170-018-2963-0.
[16]Zain AM,Haron H,Sharif S.Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Syst Appl 2010;37(6):4650–9.doi:10.1016/j.eswa.2009.12.043.
[17]An LB,Feng LJ,Lu CG.Cutting parameter optimization for multi-pass milling operations by genetic algorithms.Adv Mat Res 2011;160–162:1738–43.
[18]Saffar RJ,Razfar MR.Simulation of end milling operation for predicting cutting forces to minimize tool deflection by genetic algorithm. Mach Sci Technol 2010;14(1):81–101.doi:10.1080/10910340903586483.
[19]Zuperl U,Cus F.Tool cutting force modeling in ball-end milling using multilevel perceptron. J Mater Process Technol 2004;153–154:268–75.doi:10.1016/j.jmatprotec.2004.04.309.
[20]Zuperl U,Cus F,Reibenschuh M.Neural control strategy of constant cutting force system in end milling.Robot Comput-Integr Manuf 2011;27(3):485–93.doi 10.1016/j.rcim.2010.10.001.
[22]Yang S,Ghasemi AH,Lu X,Okwudire CE. Pre-compensation of servo contour errors using a model predictive control framework. Int J Mach Tools Manuf 2015;98:50–60.doi:10.1016/j.ijmachtools.2015.08.002.
[23]Erkorkmaz K,Altintas Y.High speed CNC system design.Part II: modeling and identification of feed drives.Int J Mach Tools Manuf 2001;41(10):1487–509.doi:10.1016/S0890-6955(01)00003-7.
[24]Huo F,Poo AN.Nonlinear autoregressive network with exogenous inputsbased contour error reduction in CNC machines.Int J Mach Tools Manuf 2013;67:45–52.doi:10.1016/j.ijmachtools.2012.12.007.
[25]Li Z,Wang Y,Wang K.A data-driven method based on deep belief networks for backlash error prediction in machining centers.J Intell Manuf 2017;1–13.doi:10.1007/s10845-017-1380-9.